Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This paper presents a deep learning method for solving an improved one-dimensional Poisson–Nernst–Planck ion channel (PNPic) model, called the PNPic deep learning solver. The solver combines a novel local neural network, adapted from the neural network with local converging inputs, with an efficient PNPic finite element solver, developed in this work. In particular, the local neural network is extended to handle the complexities of the PNPic model—a system of nonlinear convection–diffusion and elliptic equations with multiple subdomains connected by interface conditions. The PNPic finite element solver efficiently generates input and reference datasets for fast training the local neural network, as well as input datasets for quickly predicting PNPic solutions with high accuracy for a family of PNPic models. Initial numerical tests, involving perturbations of model parameters and interface locations, demonstrate that the PNPic deep learning solver can generate highly accurate numerical solutions.more » « less
-
Abstract An integral equation method is presented for the 1D steady-state Poisson-Nernst-Planck equations modeling ion transport through membrane channels. The differential equations are recast as integral equations using Green’s 3rd identity yielding a fixed-point problem for the electric potential gradient and ion concentrations. The integrals are discretized by a combination of midpoint and trapezoid rules, and the resulting algebraic equations are solved by Gummel iteration. Numerical tests for electroneutral and non-electroneutral systems demonstrate the method’s 2nd order accuracy and ability to resolve sharp boundary layers. The method is applied to a 1D model of the K$$^+$$ ion channel with a fixed charge density that ensures cation selectivity. In these tests, the proposed integral equation method yields potential and concentration profiles in good agreement with published results.more » « less
-
A single ion channel is a membrane protein with an ion selectivity filter that allows only a single species of ions (such as potassium ions) to pass through in the “open” state. Its selectivity filter also naturally separates a solvent domain into an intracellular domain and an extracellular domain. Such biological and geometrical characteristics of a single ion channel are novelly adopted in the construction of a new kind of dielectric continuum ion channel model, called the Poisson-Nernst-Planck single ion channel (PNPSIC) model, in this paper. An effective PNPSIC finite element solver is then developed and implemented as a software package workable for a single ion channel with a three-dimensional X-ray crystallographic molecular structure and a mixture of multiple ionic species. Numerical results for a potassium channel confirm the convergence and efficiency of the PNPSIC finite element solver and demonstrate the high performance of the software package. Moreover, the PNPSIC model is applied to the calculation of electric current and validated by biophysical experimental data.more » « less
An official website of the United States government
